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Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology

in Alzheimer’s disease. Tau in particular spreads in the brains of patients following

a spatiotemporal pattern that is highly sterotypical and correlated with subsequent

neurodegeneration. Novel medical imaging techniques can now visualize the distribution

of tau in the brain in vivo, allowing for new insights to the dynamics of this biomarker. Here

we personalize a network diffusion model with global spreading and local production

terms to longitudinal tau positron emission tomography data of 76 subjects from

the Alzheimer’s Disease Neuroimaging Initiative. We use Bayesian inference with a

hierarchical prior structure to infer means and credible intervals for our model parameters

on group and subject levels. Our results show that the group average protein production

rate for amyloid positive subjects is significantly higher with 0.019 ± 0.27/yr, than that

for amyloid negative subjects with −0.143± 0.21/yr (p = 0.0075). These results support

the hypothesis that amyloid pathology drives tau pathology. The calibrated model could

serve as a valuable clinical tool to identify optimal time points for follow-up scans and

predict the timeline of disease progression.

Keywords: Alzheimer’s disease, network diffusion model, tau PET, Bayesian inference, hierarchical modeling,

uncertainty quantification

1. INTRODUCTION

Alzheimer’s disease currently affects one out of 10 adults over the age of 65 in the United States
(Association, 2019). Due to demographic changes worldwide, the prevalence and public health
impact of this neurodegenerative disease is projected to more than double in the next 30 years.
Effective therapeutic interventions require early diagnosis and a detailed understanding of the early
mechanisms driving pathology. For Alzheimer’s disease, this poses a particular challenge since
clinical diagnosis is currently possible only with the appearance of cognitive impairment at late
disease stages. We now know that the first pathological changes which initiate the disease may
happen up to decades before the presence of cognitive symptoms (Bateman et al., 2012; Jack et al.,
2013). Investigating these early disease mechanisms is crucial, if we want to understand the timeline
of disease progression and identify early access points for intervention.

It is well accepted that two proteins, amyloid-β and tau, play a major role in disease initiation
and represent important biomarkers for disease progress (Duyckaerts et al., 2009). Amyloid and tau
are both present in the healthy brain, but have been found to accumulate and aggregate in abnormal
amounts and pathological forms in the brains of Alzheimer’s patients. The amyloid hypothesis
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states that at the early stages of disease, amyloid-β starts
to accumulate widely across the neocortex. Subsequently,
hyperphosphorylated tau starts to accumulate and aggregate in
neurofibrillary tangles in more and more areas of the brain,
ultimately causing neurodegeneration and cognitive impairment
(Jack and Holtzman, 2013). The sequence of when and where
neurofibrillary tangles of tau emerge has been shown to follow
a highly reproducible pattern. Cross-sectional autopsy studies
have confirmed that tangles first appear in the transentorhinal
and entorhinal cortex in early disease stages, then emerge in
the neighboring hippocampus and regions of the temporal lobe,
before ultimately spreading into more distantly connected areas
of the neocortex (Braak and Braak, 1991; Braak et al., 2006).
There is strong evidence from animal and imaging studies
that hyperphosphorylated tau spreads intracellularly along axons
in the brain (De Calignon et al., 2012; Liu et al., 2012;
Jones et al., 2017; Pereira et al., 2019), explaining how the
pathology propagates from the entorhinal cortex to connected
regions. Several studies have found links between amyloid and
tau, suggesting that amyloid pathology is a precursor for tau
pathology and influences the distribution of neurofibrillary
tangles in the brain (Price and Morris, 1999; Musiek and
Holtzman, 2012; Jack et al., 2013). Tau itself has been found to be
strongly correlated with tissue atrophy and neurodegeneration,
making it a predictor for cognitive impairment at later disease
stages (Harrison et al., 2019; La Joie et al., 2020).

The consistency of tau’s spatiotemporal progression and its
confirmed direct correlation with neurodegeneration make it an
optimal target for computational modeling. Personalized models
of tau pathology could serve as a tool to predict individual disease
progression timelines and as simulated controls in clinical trials.
In the latter context, the model may be leveraged to predict how
tau would develop in a test subject over time without intervention
which can then be compared to the actual developments in
the test subject with interventions targeting tau aggregation
(Congdon and Sigurdsson, 2018). Multiple groups have proposed
network diffusion and epidemic spreadingmodels to simulate the
spatiotemporal propagation in the brain for pathological proteins
in general (Iturria-Medina et al., 2014; Weickenmeier et al., 2019;
Garbarino et al., 2021), and for tau in particular (Raj et al., 2012;
Torok et al., 2018; Fornari et al., 2019; Vogel et al., 2020) with
good qualitative results. Until recently, the only way to measure
the distribution of tau in the brain was through postmortem
histology or by making assumptions about the relationship
between tau and tissue atrophy observed in structural MRI scans
(Raj et al., 2012; Torok et al., 2018). The resulting lack of data
has posed significant challenges for calibration of computational
tau models. However, an emerging molecular imaging technique,
positron emission tomography (PET), now enables us to track
the distribution of hyperphosphorylated tau in the brain in
vivo (Johnson et al., 2016; Villemagne et al., 2018). As the
technique is maturing, the amount of available data is growing
steadily, allowing us to computationally comprehend the tau
pathology in individual subjects over time and use this data for
model calibration.

In a recent study, we have shown that we can successfully
fit a network diffusion model based on a weighted Laplacian

graph of the axonal connectome to longitudinal tau PET data
of 46 subjects using a deterministic optimization approach
(Schäfer et al., 2020). With tau PET becoming a more established
component of longitudinal imaging studies, the amount of
available data is steadily increasing, setting the ground for data-
driven modeling techniques. Here we use Bayesian hierarchical
modeling (Peirlinck et al., 2019) to calibrate the same network
diffusion model to longitudinal imaging data from 76 subjects
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
2020). Introducing this probabilistic approach to replace our
previous deterministic optimization allows us to account for
potential uncertainties in image acquisition and processing,
and at the same time, quantify the uncertainty in our model
calibration. Identifying the uncertainty in our model parameters
is essential to determine the accuracy of our personalized model
predictions. If clinical scientists and study designers are to use
our model, it is crucial to quantify the accuracy of the simulation.
Only then can they determine for which subjects the disease
course can be confidently inferred from the available data and for
which subjects additional data may be needed to make accurate
enough projections. It may also inform them at which time points
to acquire additional data to most efficiently improve model
accuracy. The hierarchical structure we chose here to represent
our model parameters on group and subject levels, will help us
gain a better understanding of variability and commonalities of
tau pathology between subjects.

2. MATERIALS AND METHODS

Figure 1 gives an overview of our methods. In summary, we
obtain regional tau uptake values from longitudinal tau PET
images through a process of image registration, segmentation,
and region of interest analysis. We assume that the propagation
of misfolded tau in the brain can be described by a network
diffusion model characterized by two model parameters,
diffusion coefficient and production rate. After defining weakly
informative prior distributions for those model parameters we
use a Markov Chain Monte Carlo algorithm to smartly sample
from the priors. Inserting the sampled parameters into our
model and comparing the resulting simulated tau uptake with
the observed data then allows us to rate each sample based on its
likelihood and apply Bayes’ theorem to determine the posterior
distributions of most likely parameter values for each subject.

2.1. Network Diffusion Model
We model the accumulation and propagation of
hyperphosphorylated tau in the brain’s connectome as a
diffusion problem on a weighted, undirected graph G with
N nodes, representing different brain regions, and E edges,
representing axonal connections between those brain regions.
We use the Budapest Reference Connectome v. 3.0 (Szalkai
et al., 2017) to obtain the graph G from processed diffusion
tensor imaging data of 418 healthy subjects collected through
the Human Connectome Project (McNab et al., 2013). From the
original graph with N = 1015 nodes, we create a reduced graph
with N = 83 nodes representing 83 cortical and subcortical
brain regions. The edge weights of the network are defined
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FIGURE 1 | Summary of Methods. Summary of our workflow including PET image analysis and Bayesian modeling to obtain personalized posterior distributions of

two model parameters describing the tau pathology in the examined group of subjects.

by the number of fibers nij detected along the respective edge
between the pair of nodes i and j, divided by the fiber length lij
along this edge averaged across all 418 brains. The adjacency
matrix Aij of the graph, containing the edge weights for all
connections, is thus computed as Aij = nij/lij. The resulting
network and its adjacency matrix are illustrated in Figure 2,
showing a small number of strong and medium connections
within and between the lobes of each hemisphere and only few
connections between hemispheres.

We characterize the aggregation and spread of pathological
tau within the brain connectome as a nonlinear reaction-
diffusion problem governed by the Fisher-Kolmogorov equation
(Fisher, 1937; Kolmogorov et al., 1937). This equation describes
how the concentration of misfolded protein c evolves over time
based on the assumption that tau pathology develops in a prion-
like fashion (Jucker andWalker, 2011; Fornari et al., 2019, 2020).

dc

dt
= ∇ · (D · ∇c(t))+ α c(t) [ 1− c(t) ], (1)

Here,D denotes the diffusion tensor, which determines the speed
and directionality of corruptive tau seed propagation, and α the
local production rate, which captures the processes of protein
production, clearance and conversion from healthy to unhealthy
seeds (Fornari et al., 2019). In order to apply the diffusion model
to our brain network, we discretize Equation (1) on the weighted
graph G. This leads to a discretized diffusion equation expressing
for each node of the network i = 1, ...,N the change in nodal

FIGURE 2 | Brain network model. Connectivity-weighted brain network and

corresponding adjacency matrix. Colors represent the connection strength

between two regions. Connectivity is moderate to strong within the two brain

hemispheres while there are only few and weak connections between

hemispheres.

concentration of misfolded protein ci as

dci

dt
= −κ

N∑

j=1

Lij cj(t)+ α ci(t)[ 1− ci(t)]. (2)

Equation (2) contains two model parameters, κ and α, which we
can calibrate to individual patient data to reflect differences in
disease dynamics across individuals. The diffusion coefficient κ
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determines the transport rate of misfolded protein between two
regions and α the production or clearance of pathological protein
at each node. We assume these model parameters to be identical
at all nodes i = 1, ...,N, but different between individuals. The
weighted graph Laplacian Lij summarizes the connectivity of the
graph. Its diagonal terms contain information about how much
protein diffuses out of node i into other nodes j and its non-
diagonal terms describe how much protein enters node i from
all other nodes j. The Laplacian is a square matrix constructed by
subtracting the adjacency matrix Aij from the degree matrix Dii,

Lij = Dij − Aij. (3)

The degree matrix Dii is a diagonal matrix with each entry
representing the sum of elements along a row of the adjacency
matrix Aij,

Dii = diag

N∑

j=1,j 6=i

Aij. (4)

2.2. Image Data
We use longitudinal imaging data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) ADNI (2020) to initialize and
calibrate our model. From the database, we select 76 subjects with
at least three consecutive tau PET scans, which were acquired
on average 1 year (1.07 ± 0.31) apart. This group contains
a variety of clinical diagnoses, 31 subjects are diagnosed as
cognitively normal, 15 with significant memory concern, 28 with
mild cognitive impairment, and two with clinically confirmed
Alzheimer’s disease. Previously evaluated β-amyloid PET images
identify 46 subjects as amyloid positive (Landau et al., 2013),
meaning the average measured amyloid concentration in their
brain exceeds a certain threshold value. We conduct our analysis
blind to clinical diagnosis, but take amyloid status into account
in our model structure.

All acquired AV1451-PET scans were processed according to
standard ADNI protocols (ADNI, 2020). For each subject, we co-
register the PET images to a corresponding high resolution T1
weighted magnetic resonance image (MRI) which we segmented
into 68 cortical and 45 subcortical regions according to the
Desikan-Killiany atlas (Desikan et al., 2006) using FreeSurfer
(FreeSurfer, 2020). We use this segmentation to compute
regional tracer uptake values from the PET images for the same

83 regions represented in our network model. We normalize

these regional uptake values with respect to the uptake in the

inferior cerebellar gray matter, which serves as our reference
region, in order to gain regional standardized uptake value
ratios (SUVR). Since PET recordings in subcortical regions and
the hippocampus are known to be contaminated by off-target
binding in the choroid plexus and nearby vascular structures
(Lowe et al., 2016; Marquié et al., 2017; Lemoine et al., 2018), we
focus our model calibration on the remaining 66 cortical regions.

Our network diffusion model delivers regional normalized tau
concentrations csim, between zero, indicating that no misfolded
protein is present, and one, indicating that a maximum amount
of misfolded protein is present, 0 ≤ csim ≤ 1. To compare
simulated with observed protein concentrations, we need to map

the tau PET standardized uptake value ratios into the same zero-
to-one interval. To this end, we identify a lower threshold for
tau positivity by fitting a Gaussian mixture model with two
components to the cumulative raw tau PET data craw from all
subjects, time points, and regions. Assuming that many of the
included regions must be free from pathological tau, this allows
us to determine the minimum raw PET value that should be
considered positive. We declare all values below to this threshold
of craw = 1.1 to be zero and normalize the remaining raw values
such that 0 ≤ cpet ≤ 1.

2.3. Hierarchical Bayesian Inference
For each subject, we infer a personalized diffusion coefficient
κs and protein production rate αs most accurately reproducing
the image data and quantify the uncertainty in our calibration
using Bayesian inference. For each subject, we set the initial
conditions of our model to the tau uptake values measured
in the baseline PET scan csim(t = 0) = cpet(t0). Starting
from this initial distribution of tau, Bayesian inference allows
us to find the parameters that, when inserted into the model,
minimize the difference between the model predictions csim(ti)
and the longitudinal tau PET data cpet(ti) for each subject.
The timepoints ti (i = 1, ...,M) for model evaluation are
dictated by the timepoints of PET scan acquisition, with the
number of follow-up scans M ranging from two to four
depending on data availability for each respective subject. To
define the prior distributions for our Bayesian inference, we
employ the hierarchical structure illustrated in Figure 3. The
hierarchical approach allows us to gain personalized posterior
distributions while taking into account commonalities between
subjects (Gelman and Hill, 2006). Specifically, we assume that
the personalized diffusion coefficient κs is represented by a
normal distribution bounded to positive values. Additionally, we
propose that the hyperparameters µκ and σ κ , representing mean
and standard deviation of this bounded normal distribution,
are drawn from common hyperdistributions for all subjects.
To account for potential deviations in pathology based on
the subjects’ amyloid status, we assume that the personalized
production rate, αs

Aβ+ or αs
Aβ−, is drawn from a different normal

distribution depending onwhether the subject has been identified
to be amyloid positive or negative. To account for similarities
across subjects within one amyloid status group, we postulate that
the hyperparameters µα

Aβ+ and σ α
Aβ+ are drawn from common

hyperdistributions for all amyloid positive subjects, while the
hyperparameters µα

Aβ− and σ α
Aβ− are drawn from common

hyperdistributions for all amyloid negative subjects.
We postulate that the likelihood between the time-dependent

PET imaging data D̂(t) and our model predictions D(t,ϑ ,ϕ) is
normally distributed around the modeled values with a width
of σ err.

p(D̂(t)|ϑ ,ϕ) ∼ Normal(mean = D(t,ϑ ,ϕ), width = σ err). (5)

To complete our statistical model in a Bayesian setting, we
select weakly informative priors for our set of model parameters
ϑ = {κs,αs

Aβ+,α
s
Aβ−} and our set of hyperparameters ϕ =

{µκ , σ κ ,µα
Aβ+, σ

α
Aβ+,µ

α
Aβ−, σ

α
Aβ−} as summarized in Table 1.
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Finally, we compute the posterior distributions p(ϑ ,ϕ|D̂(t))
for the model parameters ϑ and hyperparameters ϕ using Bayes’
theorem,

p(ϑ ,ϕ|D̂(t)) =
p(D̂(t)|ϑ ,ϕ) p(ϑ ,ϕ)

p(D̂(t))
, (6)

with p(ϑ) denoting the prior distributions from Table 1. Since
we cannot solve for the posterior distributions analytically, we
adopt approximate-inference techniques to calibrate our model
to the imaging data. Specifically, we use the No-U-Turn sampler
(NUTS) (Hoffman and Gelman, 2014), a type of Hamiltonian
Monte Carlo algorithm implemented in the python package
PyMC3 (Salvatier et al., 2016) to numerically approximate the
posterior distributions. We run two chains with 1,600 tuning
samples and 2,000 post-tuning samples each. After convergence

TABLE 1 | Hierarchical Bayesian inference.

Parameter Distribution

µκ BoundNormal(> 0,1,20)

σ κ HalfCauchy(β = 1)

κs BoundNormal(> 0,µκ ,σ κ )

µα
Aβ+ Normal(0,2)

σ α
Aβ+ HalfCauchy(β = 1)

αs
Aβ+ Normal(µα

Aβ+,σ
α
Aβ+)

µα
Aβ− Normal(0,2)

σ α
Aβ− HalfCauchy(β = 1)

αs
Aβ− Normal(µα

Aβ−,σ
α
Aβ−)

σ err HalfCauchy(β = 1)

Prior distributions for the personalized diffusion coefficient and its hyperparameters, the

personalized production rate and its hyperparameters, and the width of the likelihood.

of the posterior distributions, we draw 4,000 posterior predictive
samples of different parameter combinations which allow
us to quantify the uncertainty on the inferred parameters.
Additionally, we sample from the posterior distributions to
predict the evolution of tau in three brain regions of interest
in 35 subjects with a positive production rate. Specifically, we
predict how the tau concentration is projected to change over the
next 30 years in the entorhinal cortex (EC), the middle temporal
gyrus (MTG) and the superior temporal gyrus (STG). Post
mortem histological studies have shown that these regions are
affected by hyperphosphorylated tau and neurofibrillary tangles
at different disease stages, the entorhinal cortex falling into Braak
stage II, the middle temporal gyrus into Braak stage IV and the
superior temporal gyrus into Braak stage V (Braak et al., 2006).
By propagating the uncertainty from the parameter inference
through the posterior predictions, we gain an ensemble of
forecasts enabling us to determine the credible intervals around
our predictions.

3. RESULTS

3.1. Posterior Distributions
Figure 4 shows the posterior distribution density plots for
the personalized model parameters κs, αs

Aβ+ and αs
Aβ−, as

well as for the hyperparameters µκ , µα
Aβ+ and µα

Aβ−. The

personalized diffusion coefficient, characterizing how fast tau
spreads along a single connection between two regions, is
physically constrained to be positive. We found that this
parameter takes on values of up to 4.38 µm/yr. Across
all subjects we identified an average diffusion coefficient of
1.304 ± 0.69 µm/yr. The protein production rate can take on
positive or negative values, depending on whether clearance
or production of pathological protein dominate in a particular
subject. Both amyloid groups contain subjects with positive and

FIGURE 3 | Hierarchical Bayesian inference. Hierarchical structure and prior assumptions for Bayesian inference approach.
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subjects with negative production rates. However, the density
plots of the hyperparameters show that there is a noticeable
difference in the group-level mean production rate depending
on amyloid status. Subjects with negative amyloid status tend
to exhibit a lower protein production rate than subjects with
positive amyloid status. We identified an average production rate
of −0.143 ± 0.21/yr across all amyloid negative subjects and
0.019 ± 0.27/yr across all amyloid positive subjects. Table 2
summarizes the mean, maximum, and minimum inferred values
for all personalized model parameters.

The boxplot in Figure 5 further illustrates the effect of
amyloid status on the inferred personalized production rate.
When comparing the average production rates associated with
amyloid positive and negative groups in an independent t-
test, we found that the difference is significant with p =

0.0075. While there are some outliers toward negative values
in the amyloid positive group, overall the production rate
associated with amyloid positive subjects is significantly higher

TABLE 2 | Posterior distributions.

Parameter Diffusion

coefficient κs

Production rate

αs
Aβ−

Production rate

αs
Aβ+

[µm/yr] [1/yr] [1/yr]

Mean 1.304 −0.143 0.019

Std ±0.69 ±0.21 ±0.27

Min 0.15 −0.49 −1.01

Max 4.38 0.27 0.44

Mean values, standard deviations, maximum and minimum values for personalized model

parameters.

than the production rate associated with amyloid negative
subjects. Our results did not show any significant and
consistent trends in diffusion coefficients or production rates
associated with different clinical diagnoses, e.g., cognitively
normal, mild cognitive impairment, or Alzheimer’s disease (see
Supplementary Figure 1).

3.2. Posterior Predictive Modeling
Posterior predictive modeling allows us to propagate the
uncertainty from the Bayesian inference process through the
model and illustrate its impact on model predictions. Figures 6–
8 show our projections for tau evolution over 30 years after

FIGURE 5 | Amyloid status. Boxplot illustrating the distributions of

personalized production rates in amyloid negative and amyloid positive subject

groups. The difference between the two groups is significant with p = 0.0075.

FIGURE 4 | Posterior distributions. Posterior distributions for diffusion coefficient and protein production rate on group and subject levels. Subject-wise distributions

for the production rate are depicted in light and dark green in separate plots based on amyloid status. In each of those plots, the individual distributions associated

with the other amyloid status group are depicted in light gray for comparison.
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the first PET scan in 35 subjects and three different brain
regions. The sigmoid like shape of the curves is characteristic
for the combined diffusion production equation we use to
model the spread of pathological tau and local conversion from
healthy to unhealthy proteins. The shaded area around the
curves represents the 95% credible interval, quantifying the
uncertainty in our predictions as established by the probabilistic
approach. Narrow credible intervals indicate high confidence in
our predictions. The curves are fairly symmetrical across left and
right hemisphere. When comparing the predictions for different
subjects within entorhinal cortex (EC), middle temporal gyrus
(MTG) and superior temporal gyrus (STG), we can identify a
number of subjects for which the credible interval is narrow,
confirming high certainty for our predictions. Specifically, there
are seven subjects for whom the credible interval does not exceed
a width of 0.2 over 30 years in any of the three examined brain
regions. Formultiple other subjects however, the credible interval
is rapidly widening after only a few years. For these subjects, the
available imaging data did not yet contain enough information
to confidently infer personalized model parameters with our
probabilistic approach. In those instances, additional data from
PET scans at future time points may improve the prediction
certainty. The vertical gray lines in Figures 6–8 indicate the year
at which the width of the credible interval exceeds a critical
threshold of 0.2. If the goal is to collect additional data to
increase confidence in our projections, these time points would
be reasonable choices for additional scans. The value of 0.2 was

chosen arbitrarily to illustrate how our uncertainty predictions
can inform future study design if there is a known confidence
requirement for predictions.

4. DISCUSSION

In this study we used a probabilistic approach based on
hierarchical modeling and Bayesian inference to identify
personalized model parameters of a physics-based network
diffusionmodel for misfolded tau propagation.We calibrated our
model to longitudinal tau PET data of 76 subjects and created
personalized predictions for disease progression over a course of
30 years. Propagating the uncertainty from our parameter search
through the posterior predictions allowed us to determine the
credibility associated with our predictions for different subjects
and brain regions.

We based the structure of our hierarchical model on the
assumption that the protein production rate, summarizing
the process of healthy protein production, protein clearance
and conversion from healthy to misfolded protein, may vary
between amyloid positive and amyloid negative subjects. This
assumption makes sense in light of the amyloid hypothesis,
which identifies amyloid pathology as the primary hallmark
of Alzheimer’s disease. In fact, tau pathology has been found
in medial temporal limbic areas before the appearance of any
amyloid plaques (Braak and Del Tredici, 2011). However, these

FIGURE 6 | Posterior predictive modeling. Predictions for the change in tau in the entorhinal cortex in 30 years after first tau PET scan for 35 subjects. Shaded areas

around the curves represent the 95% credible intervals of the predictions.
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FIGURE 7 | Posterior predictive modeling. Predictions for the change in tau in the middle temporal gyrus in 30 years after first tau PET scan for 35 subjects. Shaded

areas around the curves represent the 95% credible intervals of the predictions.

early tau accumulations are usually so small that they can
only be detected by immunostaining methods and are rather
related to normal aging than to Alzheimer’s disease. It has
been suggested that, independent from previously existing minor
tauopathy, amyloid pathology intensifies and accelerates any
existing tauopathy through currently unknown mechanisms
(Price and Morris, 1999; Jack et al., 2013). This may allow
hyperphosphorylated tau to spread widely across the neocortex
(Musiek and Holtzman, 2012; Kevrekidis et al., 2020; Thompson
et al., 2020). Our results support the hypothesis that amyloid
pathology is a driver for tau pathology. Even though the structure
of our probabilistic model does not enforce a difference between
the production rate hyperdistributions for amyloid positive and
negative groups, we found that misfolded tau production rates
were significantly higher in amyloid positive subjects than in
amyloid negative subjects.

Across all examined subjects, we identified an average tau
diffusion rate of 1.304 µm/yr. In vivo experiments in mice
determined that healthy tau proteins move as part of the slow
component of axonal transport at 0.2–0.4 mm/day in retinal
ganglion cell axons (Mercken et al., 1995). There seems to be a
strong disconnect between the slow time scale of tau pathology
evolution in Alzheimer’s disease, which is known to typically
stretch over more than a decade (Bateman et al., 2012), and
the fast time scale of axonal transport. If misfolded tau spread
in the brain at the speed measured for healthy tau, it would
easily contaminate the whole brain in just a few months. This

scenario appears inconsistent with the slow propagation and
discrete stageing of neurofibrillary tangles and neuropathology
that has been observed in histopathological (Braak and Braak,
1991) and imaging studies (Jack et al., 2018).

A possible explanation for this discrepancy in time scales
could be related to how protein diffusion and production
contribute to tau pathology to varying extents depending on
the stage of disease. The model we use here to describe the
propagation of tau pathology in the brain is based on the
hypothesis that misfolded tau contaminates the brain in a
prion-like fashion (Jucker and Walker, 2011; Fornari et al.,
2020). We assume that hyperphosphorylated tau proteins act as
proteopathic seeds that can travel along the axon, leave the cell
and be taken up into previously unaffected neurons (Clavaguera
et al., 2009; Liu et al., 2012). Additionally, we adopt the hypothesis
that misfolded tau seeds replicate and aggregate locally (Iba
et al., 2013). Once the chain reaction consisting of the spread
of proteopathic seeds and the local multiplication of seeds is
initiated, it results in an overall increase of misfolded tau across
the brain. However, it is difficult, if not impossible, to determine
experimentally which of the two components, diffusion or local
production, dominates during different stages of disease.

A recent study aimed at quantifying the chemical kinetics
of tau replication and spreading from several modalities of
data, including seed amplification assays, histopathology, and
tau PET, found that protein replication, not spreading, is the
dominant and limiting component of tau accumulation after a

Frontiers in Physiology | www.frontiersin.org 8 July 2021 | Volume 12 | Article 702975

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Schäfer et al. Probabilistic Modeling of Tau Propagation

FIGURE 8 | Posterior predictive modeling. Predictions for the change in tau in the superior temporal gyrus in 30 years after first tau PET scan for 35 subjects. Shaded

areas around the curves represent the 95% credible intervals of the predictions.

certain stage of disease (Meisl et al., 2020). The authors argue
that misfolded tau seeds spread very fast early in the disease
process, consistent with the fast axonal transport rates known for
other proteins. After this initial fast spread, small but significant
amounts of proteopathic seeds are already present in numerous
brain regions, and further kinetics are largely determined by the
local replication and aggregation of those seeds. These findings
are consistent with our results, which indicate very low diffusion
coefficients. Unless our data were capturing the very beginning
of tau pathology, we will not be able to infer the fast transport
rates that might determine disease progression initially. Since we
use the regional tau distribution from each subject’s baseline PET
scan instead of an artificial seeding approach, it is common that
small amounts of tau are already measured in a majority of the
brain regions. The protein production rates we identified for our
subject sample are comparable to the average replication rate of
0.14/yr reported in the study above (Meisl et al., 2020).

We computed personalized 30-year predictions of tau
evolution in three different brain areas, the entorhinal cortex, the
middle temporal gyrus and the superior temporal gyrus. Since
there is a well established correlation between tau distribution
and neurodegeneration, these predictions not only contain
information about the amount of protein in these areas, but
also provide important clinical insight into when certain
brain functions might be affected. A recently conducted study
compared tau PET distribution at baseline visit to the amount
and distribution of atrophy detected between baseline and

follow-up visit (La Joie et al., 2020). It was found that tau
is a strong predictor for regional atrophy presenting around
15 months after the PET scan. In the healthy adult brain,
the neurons in the entorhinal cortex provide a number of
functionalities, but are mainly thought to be responsible for
spatial memory and spatial association tasks (Kerr et al., 2007;
Van Strien et al., 2009; Kuruvilla and Ainge, 2017). If this
area atrophies after serious invasion of misfolded tau protein,
these functions may be impaired or lost. The middle temporal
gyrus, which is part of the inferior temporal lobe, has been
suggested to play a central role in visual learning and memory
(Buckley et al., 1997) and lesions in this region may cause
object and face recognition deficits (Purves et al., 2001). The
superior temporal gyrus contains the auditory cortex and is
involved in speech and auditory processing (Gernsbacher and
Kaschak, 2003) as well as social cognition (Adolphs, 2003;
Bigler et al., 2007). The quantified uncertainty on disease
progression showcased in Figures 6–8 indicates the credibility
associated with each subject’s prediction specifically, taking into
account the behavior of the whole cohort. This framework may
provide an interesting tool for clinical prognosis, informing
clinical practitioners and caregivers when cognitive symptoms
related to loss of the functions above maybe be expected in
a certain patient. It may also provide a new means to assess
the optimal time for a follow-up scan, smartly maximizing
prognosis credibility while minimizing the number of
scans performed.
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This study comes with a number of limitations. First, the
amount of longitudinal tau PET data available today is limited.
The small sample size and limited follow-up data included
in our study result in large credible intervals and reduced
confidence in the model parameters. As tau PET becomes a more
established technique in longitudinal imaging studies over the
next years, more data will naturally become available, allowing
us to constantly improve our hierarchical model, as Bayesian
methods are inherently tailored to analyzing data that are
continuously updated in time. Adding more subjects to our data
set will further increase the learning effect we achieve through the
hierarchical structure, which will in turn increase the credibility
of all personalized predictions. Larger sample sizes of data in the
future will also allow us to explore more complex models, e.g.,
models introducing regionally varying protein production rates
based on local gene expression (Grothe et al., 2018), without the
risk of overfitting. Second, we use the same anatomical brain
network to compute tau spreading in all subjects. This network
was extracted from averaged diffusion tensor images of over 400
brains. In reality, the connectivity is different in every brain,
potentially affecting the diffusion dynamics observed here. We
attempt to surmount this issue by introducing the diffusion
coefficient as a personalized parameter. It would be reasonable
to assume that the transport rate of misfolded tau along the
axon is a biological parameter that is similar in all brains.
However, by allowing this parameter to vary between subjects,
we provide the option to scale the adjacency matrix and thereby
introduce variations in connection strength for the otherwise
non-personalized network. In the future, we plan to surpass
the potential over-generalization that using an average network
introduces by extracting personalized connectomes for each
subject from diffusion tensor images when available. Another
consideration for future studies is to correct the weighting of
connections in our network for the varying surface areas between
brain regions. Additionally, it could be of interest to compare
the performance of our model on the structural connectome
with its performance on other reference networks, and thus
test the hypothesis that misfolded tau spreads along the axonal
network. Third, since the ADNI data base only provides one
tau PET scan for each time point, this study does not explicitly
take into account uncertainties arising from imaging protocols.
However, since we expect this error to be Gaussian, it is partially
accounted for by the stochastic nature of the observation error in
our Bayesian inference framework. In contrast to deterministic
optimization algorithms, our probabilistic approach inherently
accounts for observation errors through the likelihood width.

The approach we used here is optimal for understanding the
applicability of the physics-based network diffusion model to
longitudinal brain imaging data and for quantifying the range
of model parameters presented in this data. Additionally, the
Bayesian inference framework inherently provides information
on the uncertainty in our model, intrinsically informing us on
model applicability. In the future, we will expand our model to a
more predictive approach using a combination of deep learning,
Bayesian inference, and physics-based modeling, with the goal
to create personalized predictions of tau spreading dynamics
from a single baseline PET scan. Furthermore, we will explore

a coupled model of tau pathology and resulting tissue atrophy
(Schäfer et al., 2019) calibrated to longitudinal tau PET and
structural MRI.

5. CONCLUSION

Wepresented a probabilistic approach to calibrate the parameters
of a physics-based network diffusion model to longitudinal tau
PET data. We obtained posterior probability distributions for
two personalized model parameters, the diffusion coefficient
and the protein production rate, using Bayesian inference
combined with a hierarchical prior structure. This approach
allowed us to identify the characteristics of tau propagation
for each individual subject while taking into account expected
commonalities between subjects. We inferred an average
diffusion coefficient of 1.304 ± 0.69 µm/yr, a protein production
rate of 0.019 ± 0.27/yr for the amyloid positive group, and a
production rate of −0.143 ± 0.21/yr for the amyloid negative
group. The significantly higher tau production rate associated
with the presence of amyloid-β supports the hypothesis that
amyloid pathology drives tau pathology. The small magnitude
of our inferred diffusion coefficients is inconsistent with
experimentally identified axonal transport rates for healthy tau,
but consistent with the slow disease progression known for
Alzheimer’s disease. Extrapolating our model based on the
posterior distributions of model parameters allowed us to create
personalized predictions of tau evolution in three brain regions
associated with distinct cognitive functions. These predicitons
and associated credibility intervals may serve as a tool to estimate
the timeline of regional tau pathology and function-specific
cognitive impairment in individual patients. Our findings could
serve as simulated controls in therapeutic trials or as a means to
smartly schedule follow-up PET scans that most benefit model
prediction certainty.
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